Бесконтактный инфракрасный термометр серии UT306

Введение

Инфракрасные термометры серии **UT306** (далее «пирометры») позволяют определять температуру поверхности путем измерения энергии инфракрасного излучения, которое она испускает. Модель **UT306S** имеет классический ЖК дисплей, **UT306C** обладает инверсным ЕВТN дисплеем. Данные приборы представляют собой бесконтактные инфракрасные термометры с низким уровнем потребления энергии, что позволяет использовать их в течение длительного времени, решает проблему частой замены батареи и понижения напряжения в процессе измерений. Рациональная конструкция делает измерения простыми и быстрыми.

Значок «Опасность!» указывает на условия или действия, которые могут повлечь за собой причинение ущерба пользователю. Во избежание поражения электрическим током или получения травм соблюдайте следующие правила:

- Не направляйте луч лазера в глаза прямо или через отражающие поверхности.
- В случае попадания лазерного луча в глаза немедленно закройте их и поверните голову в сторону от излучения.
- Перед использованием термометра осмотрите его. Не используйте термометр, если он имеет повреждения. Убедитесь в отсутствии трещин и целостности пластика корпуса.
- Замените батарею, как только на дисплее появится значок разряженной батареи 🖼
- Не используйте термометр, если он работает ненормально.
 При этом может быть нарушена защита. В случае сомнений передайте прибор на сервисное обслуживание.
- Не используйте прибор в присутствии взрывоопасных газов, паров или пыли.
- Во избежание опасности возгорания помните, что хорошо отражающие предметы часто дают заниженную по сравнению с действительной температуру.
- Не используйте термометр не предусмотренным настоящей инструкцией способом, поскольку это может вызвать нарушение защиты, обеспечиваемой прибором.

LASER RADIATION
DO NOT STARE INTO BEAM
CLASS 2 LASER PRODUCT λ =630-670nm,<1mW, EN60825-1:2014

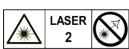
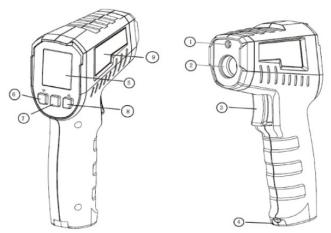


Рисунок 1. Предупреждающие отметки и символы

Предупреждение

Во избежание повреждения термометра или объекта измерения, ограждайте прибор от воздействия следующих факторов:

- ЭМП (электромагнитное поле) от дуговой сварки, индукционных нагревателей и т.п.
- Статическое электричество
- Тепловой удар (за счет сильного или резкого изменения температуры окружающей среды – после этого прибором можно пользоваться не раньше, чем через 30 минут, необходимых для стабилизации).


 Не оставляйте термометр вблизи объектов, имеющих высокую температуру.

Технические характеристики

технические характеристики	
Функция	UT306C(S)
Диапазон температур	-50°C +500°C
Оптическое разрешение	12:1
Разрешение	0,1°C
Время отклика	0,25 сек
Размер ЖК дисплея	25,26 мм
Подсветка дисплея	>
белым светом (только для UT306S)	
Отключение лазера	✓
Автоотключение	15 секунд
Режим фиксации показания (HOLD)	\checkmark
Режим непрерывного	<
измерения (SCAN)	
Минимум	✓
температуры (MIN)	
Максимум	✓
температуры (МАХ)	
Средняя температура (AVG)	✓
Отклонение температуры (DIF)	✓
Отключение лазера	✓
Сигнал по температуре верхний и нижний	✓
предел	
Выбор шкалы (°С/°F)	\checkmark
Индикация разряда батареи	✓
Тест на падение с высоты 1 метр	✓
Питание, батареи	2 шт тип ААА
Тип лазера	Класс 2 (II)
Мощность лазера	Менее 1 мВт
Длина волны лазера	630 670 нм
Спектральный отклик	8 ~ 14 мкм
Коэффициент излучения	0,1 – 1
коэффициент излучения	настраиваемый
	±2°С или ±2% при
Погрешность измерения	температуре
тогрошность измерения	окружающей среды
	23±2°C
Повторяемость	<±0,5°C или <±0,5%
Диапазон рабочей температуры	0°C ~ 50°C
Диапазон температуры хранения	-20°C ~ 60°C
Рабочая относительная влажность	< 90%
Габариты	146 × 95 × 46 мм
Bec	162 г

Стандарт JJG 856-2015

Введение

- 1. Лазерный прицел
- 2. Инфракрасный объектив
- 3. Курок
- 4. Крышка батарейного отсека
- 5. ЖК дисплей
- 6. Кнопка сканирования температуры (LOCK)
- 7. Кнопка переключения режимов (**MODE**)

- 8. Кнопка вкл/выкл лазера
- 9. Предупреждающая этикетка

Характеристики

- Одноточечное лазерное визирование
- Подсветка дисплея белым светом (только для UT306S)
- Отображение текущего, минимального, среднего и максимального значений температуры, а также разницы температур
- Настраиваемый коэффициент эмиссии
- Звуковое оповещение при выходе температуры за заданные пользователем пределы

Дисплей

₽	Блокировка курка	
Ø	Звуковой сигнал	
HOLD	Фиксация показаний температуры	
/	Индикатор заряда батарей	
88.0=3	Коэффициент эмиссии	
MAX MIN AVG DIF	Режимы измерений	
HI LO	Сигнализация по температуре	
*	Лазер	
SCAN	Режим сканирования	
°C/°F	°C/°F (температурная шкала Цель- сия/Фаренгейта)	
888.8	Основной температурный дисплей	
888.8	Дополнительный температурный дисплей	

Принцип работы термометра

Инфракрасные термометры измеряют температуру поверхности непрозрачных объектов. Оптика термометра определяет энергию инфракрасного излучения, собирая и фокусируя его на детектор, после чего электронная система термометра обрабатывает эту информацию и отображает ее на дисплее в виде значения температуры. Лазер используется исключительно для прицеливания.

Работа с термометром

Стар

Короткое нажатие на курок включает термометр. Он переходит в тот режим, в котором он был перед выключением.

Выключение

Термометр автоматически отключается через 15 секунд бездействия в режиме HOLD и сохраняет текущие показания.

Ручные измерения

1. После прицеливания на объект измерений нажмите на курок и удерживаете его. Когда на экране мигает символ **SCAN** термометр проводит измерения и показания отображаются на дисплее. 2. Отпустите курок. Символ **SCAN** пропадет и появится символ **HOLD**. Термометр прекратит измерения, последние показания зафиксируются на дисплее.

Сканирование температуры

1. Короткое нажатие кнопки **LOCK** переводит в режим сканирования температуры. На дисплее отображается символ ← надпись **SCAN** мигает. В этом режиме термометр производит непрерывное измерение температуры без нажатия на курок.

- 2. Нажмите на курок или на кнопку ♠ . Символ ♠ и SCAN погаснут, появится символ режима работы HOLD. Термометр прервет измерения, последнее показание зафиксируется на экране.
- 3. Короткое нажатие кнопки ☐ при выключенном термометре разбудит его и на дисплее отобразится последнее показание.

Примечание:

Измеряемая цель должна быть в 2 раза больше диаметра светового пятна термометра (S), и тогда расстояние до объекта измерений (D) может быть определено в соответствии со схемой соотношения D:S. Например: когда пользователь использует UT306 для измерения температуры объекта диаметром около 10 см, наиболее точный диаметр пятна (S) термометра составляет около 5 см. На основе диаграммы соотношения D:S можно оценить расстояние измерения (D), которое составит около 60 см.

Значения MAX/MIN/AVG/DIF (максимум, минимум, средняя, разница)

Для последовательного переключения между режимами измерения «MAX MIN AVG DIF» нажмите кнопку переключения режимов «MODE», и температура соответствующего режима будет отображаться на дополнительном дисплее, как показано ниже.

Лазерный индикатор

Нажатие кнопки 🛦 включает/выключает лазерный прицел. При включённом лазере на экране отображается символ 🛦. Пожалуйста обратите внимание на меры безопасности при включенном лазере.

Сигнализация о выходе температуры за пределы

Если измеренная температура превышает установленный верхний предел, символ **HI** на дисплее мигает. При включенной звуковой сигнализации гудит зуммер.

Если измеренная температура ниже установленного нижнего предела, символ **LO** на дисплее мигает. При включенной звуковой сигнализации гудит зуммер.

Если измеренная температура находится в пределах между верхним и нижнем значениями, символы **HI/LO** не отображаются на дисплее.

Настройки функций

В режиме **HOLD** нажмите кнопку «**MODE**» (Режим) и удерживайте 2 секунд для настройки:

- верхнего предела температуры ->
- нижнего предела температуры ->
- коэффициента эмиссии ->
- единиц измерения температуры ->
- включения/выключения звука ->

В режиме настройки функций пользователь может вернуться к режиму измерений нажатием курка или отсутствием операции в течение 10 секунд.

Установка верхнего предела температуры

В режиме измерений длительным нажатием кнопки «**MODE**» перейдите в режим ввода верхнего предела температуры. Используйте кнопки **v** и для установки температуры. Короткое нажатие будет изменять на 1 при каждом нажатии, длительное нажатие – на 10 (каждую секунду) текущее значение.

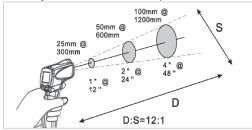
Установка нижнего предела температуры

В режиме измерений длительным нажатием кнопки «**MODE**», а затем одного короткого нажатия кнопки «**MODE**» перейдите в режим ввода нижнего предела температуры. Используйте кнопки **V** и для установки температуры. Короткое нажатие будет изменять на 1 при каждом нажатии, длительное нажатие — на 10 (каждую секунду) текущее значение.

Установка коэффициента эмиссии

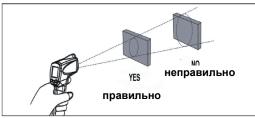
В режиме измерений длительным нажатием кнопки «**MODE**», а затем двух коротких нажатий кнопки «**MODE**» перейдите в режим ввода коэффициента эмиссии. Используйте кнопки \checkmark и \checkmark для установки значения. Короткое нажатие будет изменять на 0.01 при каждом нажатии, длительное нажатие – на 0.1 (каждую секунду) текущее значение.

Установка единиц измерения температуры


В режиме измерений длительным нажатием кнопки «**MODE**», а затем трех коротких нажатий кнопки «**MODE**» перейдите в режим ввода единиц измерений. Используйте кнопки ▼ и ▲ для переключения °C/°F

Включение/выключение звука сигнализации

В режиме измерений длительным нажатием кнопки «**MODE**», а затем четырех коротких нажатий кнопки «**MODE**» перейдите в режим включения/выключения звука. Используйте кнопки **V** и **A** для переключения.


Расстояние и размер пятна

С увеличением расстояния (D) до измеряемой области размер пятна (S), в котором производится измерение, также растет. Размер пятна соответствует 90% охваченной датчиком прибора энергии. Максимальное значение D:S достигается, когда расстояние от термометра до цели составляет 120 см, при этом прибор улавливает излучение от пятна диаметром 10 см.

Поле обзора

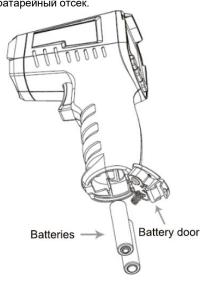
Убедитесь, что обследуемый объект больше, чем размер пятна. Чем меньше объект, тем ближе к нему должен располагаться термометр. Рекомендуемое расстояние — не более 75% от расчетного максимального значения.

Коэффициент эмиссии

Коэффициент эмиссии характеризует излучательную способность материала. Большинство органических материалов, а также окрашенных или окисленных поверхностей имеют коэффициент излучения около 0,95.

Если это возможно, то во избежание ошибок измерения, которые могут быть вызваны наличием на исследуемой поверхности элементов с металлическим блеском, покройте поверхность клейкой лентой или ровным слоем черной краски (<150°С / 302°F) и установите высокое значение коэффициента излучения. Подождите, пока клейкая лента или краска сравняются по температуре с материалом под ними, и измерьте температуру ленты или окрашенной поверхности.

В следующей таблице приведены справочные значения коэффициента излучения для различных материалов


Материал		Коэффициент излучения
Алюминий	оксидированный	0,2-0,4
	сплав А3003 оксидиро- ванный	0,3
	сплав А3003 шерохова- тый	0,1-0,3

		OIVI-I	
Латунь	полированная	0,3	
	оксидированная	0,5	
Медь	оксидированная	0,4-0,8	
	покрытие монтажных	0,6	
	плат	0,6	
Сплав «	Хастеллой»	0,3-0,8	
	оксидированный	0,7-0,95	
Сплав хром-никель-	обработанный пес-	0,3-0,6	
железо	коструйным методом	0,3-0,0	
merre e	полированный электро-	0,15	
	химическим методом		
Железо	оксидированное	0,5-0,9	
71(671000	ржавое	0,5-0,7	
	оксидированный	0,6-0,95	
Чугун	не оксидированный	0,2	
	вторичный	0,2-0,3	
Железо ковано	е пассивированное	0,9	
Свинец	шероховатый	0,7-0,9	
Свинец	оксидированный	0,2-0,6	
Молибден о	ксидированный	0,2-0,6	
Никель ок	сидированный	0,2-0,5	
Плати	на черная	0,9	
	холоднокатаный лист	0,7-0,9	
Сталь	не полированный лист	0,4-0,6	
	полированный лист	0,1	
Цинк	оксидированный	0,1	
Асбест		0,95	
Ac	фальт	0,95	
Ба	азальт	0,7	
У	′голь	0,8-0,9	
Гр	рафит	0,9	
	д кремния	0,95	
	лина	0,95	
	етон	0,95	
	кань	0,95	
	вое стекло	0,85	
	вийное покрытие	0,95	
	Гипс	0,8-0,95	
	Лед	0,98	
Известняк		0,98	
Бумага		0,95	
Пластмасса		0,95	
Почва		0,9-0,98	
Вода		0,93	
Дерево (натуральное)		0,9-0,95	
дорово (патуральное)		0,0 0,00	

Техническое обслуживание

Замена батарей 1.5 В

- 1. Откройте батарейный отсек как показано на рисунке.
- 2. Удалите старые батареи и установите новые, соблюдая полярность.
- 3. Закройте батарейный отсек.

Очистка линзы

Сдуйте с линзы частицы пыли чистым сжатым воздухом. Осторожно протрите поверхность влажным ватным тампоном. Тампон можно увлажнить водой.

Очистка корпуса

Для очистки корпуса используйте влажную губку или мягкую ткань, мыло и воду, не обмакивайте прибор в воде.

А Предупреждение

Во избежание повреждения термометра НЕ погружайте его в воду.

Поиск и устранение неисправностей

Симптом	Неисправность	Действие
OL (на дисплее)	Температура мишени выше пределов диапазона измерений	Выбирайте объект измерений в соответствии с техническими характеристиками прибора
-OL (на дисплее)	Температура мишени ниже допустимых пределов	Выбирайте объект для измерений в соответствии с техническими характеристиками прибора
	Батарея разряжена	Замените батарею
Пустой дисплей	Возможно, неисправна батарея	Проверьте и/или замените батарею
Ошибка дисплея (при включении)	Возможно нарушены температуры эксплуатации прибора	Подержите прибор в течение 30 минут при температуре от 0°C до 50°C
Лазер не работает	Батарея разряжена или неисправна Температура окружающей среды выше 40°C (104°F)	Замените батарею Используйте прибор в местах с более низкой температурой окружающей среды
Неточные измерения	1. Возможно неправильно установлен коэффициент эмиссии. 2. Диаметр цели слишком мал <	Установите правильный коэффициент эмиссии. Уменьшите расстояние до мишени.

UNI-T®

UNI-TREND TECHNOLOGY (CHINA) LIMITED

No 6, Gong Ye Bei 1st Road

Национальная зона развития высокотехнологичного производства Озеро Суншань (Songshan Lake National High-Tech Industrial Development Zone),

Дунгуань (Dongguan city),

Провинция Гуандун (Guangdong),

Китай

Тел.: (86-769) 8572 3888 http://www.uni-trend.com